
Quantum corrections for a system of interacting phonons and the modified Korteweg-de Vries

equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 911

(http://iopscience.iop.org/0305-4470/12/6/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 15:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math. Gen., Vol. 12, No, 6, 1979. Printed in Great Britain 

Quantum corrections for a system of interacting phonons and 
the modified Korteweg-de Vries equation 

K Ahmed and G Murtaza 
Department of Physics, Quaid-i-ham University, Islamabad, Pakistan 

Received 14 April 1978, in final form 11 September 1978 

Abstract. A one-dimensional anharmonic lattice with four phonon interaction is studied. 
The quantum corrections to the nonlinear equation of motion are calculated and a single 
soliton-like solution of this equation is obtained in the coherent state representation of 
phonons. 

1. Introduction 

Recent interest in the non-linear (anharmonic) lattice system began with the early 
numerical study of Fermi, Pasta and Ulam (1965), (hereafter denoted by FPU) on the 
problem of the normal-mode energy behaviour of a system of particles connected by a 
set of non-linear springs arranged as an approximation to one-dimensional anharmonic 
coupled oscillators in a lattice. An explanation of the ‘energy recurrence’ phenomenon 
observed by FPU and also the absence of equipartition of normal mode energies was 
later given by Zabusky (1967), on the basis of his continuum model. Toda (1975) has 
also given a similar explanation using his exponential lattice. Zabusky, however, 
emphasised the classical wave-like picture, deriving the Korteweg-de Vries (KDV) 
equation for this nonlinear system and its finite amplitude soliton solution. He has 
further stressed that the quantum approach based on phonons for this problem is not a 
suitable way to describe the ‘recurrence’ phenomenon. More recently, Ichikawa, 
Yajima and Takano (1976), (hereafter denoted by IYT) in an interesting work have 
established a correspondence between the non-linear wave phenomenon and the 
quantum approach based on the phonon description for such a lattice system. Assum- 
ing an interaction containing the lowest degree of non-linearity, that is, three, for a 
one-dimensional lattice, IYT have explicitly derived the KDV equation on the basis of a 
coherent state representation for the interacting phonons. They further showed 
explicitly that a soliton can be given a quantum mechanical interpretation as a coherent 
state of excited phonons in the system. In the present paper we extend their work to the 
case of fourth degree of anharmonicity. This case is of interest because of its field 
theoretical importance and its analogy with the self-interacting scalar A~$~-field theory. 
As in the AC$4-theory, one expects here quantum corrections that would modify the 
frequency w (k) of the free oscillator, or, in the language of field theory, ‘renormalise’ 
the corresponding phonon energy hw (k). Without resort to explicit perturbation 

t Presently on leave to the Department of Physics, Faculty of Science, University of Garyounis, Benghazi, 
Libya. 
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theory or to Feynman diagrams, we propose to evaluate these effects by introducing the 
normally ordered Hamiltonian into the framework laid down by IYT. The introduction 
of the interaction through the time ordering, therefore, generates the required quantum 
corrections. The resulting equation of motion in the low wave number approximation is 
still the KDV type. We again obtain a soliton solution of this equation which now 
depends upon the quantum correction factor, It is also argued that the quantum 
corrections vanish in the case of non-linearity n = 3 to give the same result as that of IYT. 

The plan of the paper is as follows: The remaining section reviews the notation of 
IYT, also to be used here. In 0 2 ,  we evaluate the quantum fluctuation contribution to 
the equation of motion. Next we make a long wavelength approximation of this 
equation, finally solving it. In  0 3 the conclusion and remarks are provided. 

We write the Hamiltonian for our anharmonic lattice as 

H = Ho +H’,  
where 

and g 4  is the non-linear coupling of fourth degree in our case. The normal mode 
expansions for atomic displacements are 

where x, = rl is the position of the rth atom in terms of the lattice spacing constant 1. 
Thus substituting (1 .2 )  into ( l . l ) ,  we obtain 

Ho = hw ( k  ) ( a  :a& + t )  
k 

(1.3) 
H’= A(kl+.  . . + k 4 ) 4 ( k l 7 . *  . 7 k4)(U?k1 + a k l ) .  . . (U:&, 

k , .  .... k 4  

where 
N 

A(k) = N-’ 1 exp(irlk), w 2 ( k )  = 4 ~ / p  sin2($lk), w ( - k )  = w ( k )  
r = l  

( 1 .4 )  
d ( k i ,  . . . , k4) = (~Kg4)(h/24L)2[(2i)2/N1/2]2 

X exp[-iil(kl +. . . + k4) ] [w(k l ) ,  . . . , (k4)]-”2 sin i l k l  . . . sin i lk4 .  

Lastly, to complete quantisation the quantum relations are given as: 

(1.5) 

The Glauber (1963) coherent states of phonons (a&) used as the basic representation by 
both IYT and ourselves are defined as 

t t  
[U&, U : ’ ]  = A(k - k ’ )  [U& ,  a&,] = 0 [ U & ,  U & ’ ]  = 0. 

m 

n k = O  
a k l a k )  = a k l a k ) ,  lad = exp(-la& 1 (ak)”k/l(nk!)”21nk). (1.6) 

The average occupation number of phonons n k  is therefore given by the Poisson 
distribution with mean value of (nk) = l a k  1 2 .  The expectation value of the displacement 
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operator y ,  in the coherent state representation is then given by 

(akIYrlak)=N1” C y ( k )  exp(ikx) (1 .7)  
k 

using equations (1.2) and (1.6), where the ‘amplitude’ 

y ( k ) =  (h/2@w(k))”2(a?k + a k ) .  

2. Quantum correction contribution to equation of motion 

2.1. Exact derivation 

In order to calculate these effects let us consider the commutator of the operator a, with 
the normally ordered interacting part of the Hamiltonian, H’:? 

[a,, : H ’ : ] = 4  1 c $ ( k l , .  . . ,  k 4 ) h ( k i f . .  .+k4)h(q fk i ) (Ulk2+Uk, )  
k i ,  .... k 4  

X(atk3 +ak3)(ark4 +ak4)+24 C 4 ( - q 7  k, -k, q ) ( a t q  + a q ) .  (2.1) 
k 

Note that the second term in equation (2.1) comes from all possible single contractions. 
Next the expectation value of equation (2.1) in the coherent state (1.6) describes the 
equation of motion for the eigenvalue ak.$ 

a 
at  

i h - f f k  = ( a l [ U k ,  :H:]lCY) 

(2.2) 

t Of course, the normal ordering prescription is more complete field theoretically as it also takes loop 
divergences into account (see Rajaraman 1975). However, this prescription does not lead to any new result in 
the case of non-linearity n = 3. See the next footnote in this context. Note that the corresponding equation to 
equation (2.1) in the case of IYT after using normal ordering would not yield any terms additional to those 
already given there, as contractions in their case give 

C 
k I .  k 2 . k )  

9 ( k i ,  kzr k 3 )  A(ki, kz, k3) A ( k i  + kz )  A(k + k3), 

which vanishes identically, because of the property of the coupling coefficient 

(4(/c1, k z ,  k3))’=sin(ilk,) s in( ik2)  sin(flk3). 

$ With IYT, we have neglected the contribution of Umklapp processes in our calculation. 
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Using equations (1.2’), (2.1) and ( 2 . 2 ) ,  the equation of motion for the kth mode 
amplitude y ( k )  after some straightforward calculation becomes: 

y(k ,  t )  = - ( w 2 ( k ) + 4 8 ( w ( k ) / h )  4 ( - k ,  k ’ ,  -k’, k ) ) y ( k ,  t )  
k ’  

- 8 ( 2 ~ ~ / h ) ~ ’ ~ ( “ k ) / 2 ~ h ) ~ ’ ’  4 ( k i ,  . . . , k4) A(k1 +. . . + k4) 
k i .  .... k4 

x ~ ( k  + kl)(w(k2)w(k3)w(k4))1’2Y(k2, t ) ~  ( k 3 ,  t ) ~  (k4, t )  (2.4) 

where the second term in brackets containing the sum over k is the required contribu- 
tion from quantum corrections. 

To calculate this quantum correction effect explicitly, we first evaluate the expres- 
sion for C#J from (1.4) as 

c$(-k, k ‘ ,  -k‘, k )  = c N h 2 w ( k ) w ( k ’ ) ,  

where 

CN = N-’(g4/16K).  

The equation of motion (2.4) then becomest 

y(k,  t )  = - w Z ( k ) (  1 +48CN. h w ( k ’ ) ) y ( k ,  t ) - 8 ( 2 ~ ~ / h ) ~ ’ ~ ( ~ ( k ) / 2 ~ ~ h ) ~ ’ ~  
k ’  

2.2. Long wavelength approximation 

At this stage we introduce the approximation of neglect of large wave number phonons 
to solve the exact equation ( 2 . 5 ) .  But before this we notice that the frequency of the free 
oscillator has now been modified in equation (2.5) due to the quantum corrections 
according to 

w 2 ( k ) + ( l + 4 8 C N h X  k ’  ~ ( k ’ ) ) w ~ ( k ) = r ~ w ~ ( k ) _ w ~ ~ ( k ) ,  

where 

f 2  = 1 + 4 8 C N h  ~ ( k ’ )  
k ’  

(2.5‘) 

is the frequency correction factor with 

1 w ( k ‘ )  = ( 4 ~ / p )  1 sin(tlk’), (for positive values of k’) 
k ’  k ’  

t It is interesting to observe that the equation (2 .5)  can be transformed back into the classical lattice equation 
of motion: 

WYr = K ~ * ( Y ~ + ~ - ~ Y I + Y , - ~ ) + K ~ ~ ( ( Y ~ ~ ~ - Y , ) ~ - ( Y ~ - Y ~ - ~ ) ~ ) .  

This describes the original classical lattice with a renormalised linear coupling. One may as well start the 
analysis from this equation of motion. (We thank the referee for this comment.) 
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and can be easily calculated for a periodic lattice having a discrete sum over finite k '  
values, e.g. 

n = 0, 1 ,2 ,  . , , , N/2 

Thus in the low wave number limit when r n  << N, such that sin(ilk) =i lk  and for the 
above choice of discrete k '  values; Ekf w(k') can be estimated as approximately equal to 
2 ( ~ / w ) ' / ~ ( r / N ) s ,  = K,, (constant) with m << N where S,  is the sum of first n allowed 
natural integers (i.e. s,, =+n(n  + I)) .  

Further, in the low wave number or long wave length phonon approximation 
referrred to already, we may approximate r$ and w with IYT as: 

r$(ki, k2, k3, k4) 

ilk' = m / N ,  (N/2 + 1 values for N even). 

- t ~ g ~ ( h / 2 ~ ~ ) ( ( 2 i ) ~ / N ) i l k ]  .'ilk2 . i lk3  . ~ l k 4 ( o ( k l ) o ( k 2 ) ~ ( k 3 ) w ( k 4 ) ) - 1 / 2  
1 2 2  1 2 2  o(k)-(K/CL)1'211kl(l-~l k ) = S l k l ( l - ~ l  k ), 

where S = ( ~ / p ) ' / ' l ;  so that the equation of motion (2.5) finally becomes: 

y(k, t)+S2k2(1-&12k2)(1+48CNhK,)y(k, t )  

= ag4S2(1/2N)2(2i)4k 1 A(-k + k2 + k3 + k4) 
k2.k3 .k4  

x k2y (k2, t ) k 3 y  (k3, f)k4y (k4, t ) .  (2.6) 
Defining a new variable u(k, t )  and its Fourier transform 

u(x,  t )  = N-'" 1 u ( k ,  t )  exp(ikx) 
k 

u(k, 4 = k y ( k  0, 

we may Fourier transform equation (2.6) into a non-linear differential equation which 
governing the dynamics of the lattice of anharmonicity four. 

a4 a' a2 
at2 ax 12 ax 

1 2 2 2  
--U(% t ) - S 2 f 2 ( n ,  N ) - - ~ u ( x ,  t ) - - S  I f ( n , N ) y u ( x ,  t )  

a2 
- g 4 s  1 T ( U ( X ,  t ) ) 3  = 0, ax 

where 
f 2 ( n ,  N) = 1 + ~ ~ C N ~ ~ ( K / C L ) * / ~ .  (?T/N)S 

(2.7) 

(2.7') 

is the frequency correction factor mentioned above. Equation (2.7) can now be 
converted into the KDV type by introducing the reductive perturbation techniques 
(Tanuiti 1974) with the following expansion and space-time rescaling: 

3 U = E U ( 1 ) + E 2 U ( 2 ) + .  . .) 6 = E ( X  - t ) ,  7 = E  I 

into the form 

Note that after applying this method the first integral of equation (2.8) is trivial. 
Returning to  the original variables, equation (2.8) now becomes 

a a 1 2 2 2  a3 s2i2 a 
at ax 24 ax 2 ax 
-U(& t )+S-u (x ,  t ) + - S  I f ( n ,  N ) ~ u ( x ,  t)+g4- -(U(& t ) ) 3 = 0 .  
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3. Conclusion and remarks 

The above is a modified KDV equation and admits one soliton solution given by (Tanuiti 
1974): 

u(x, t )  = 77 sech(a(f)(x -bsr)) (3 .1 )  

where 

( ~ ( f ) ) ~  = 22(3/2g4772)(f2(n, N - ’ ,  b = 1 + (1/4)g477212S, (3 .2 )  

with f ( n ,  N )  as given by (2 .7‘ ) .  

state of excited phonons with amplitude 
Finally, it is straightforward to verify that the one soliton state is now a coherent 

ff k = (-i/N’/2)(cLw (k ) / 2 h )  ‘I2( 1 + bSk/w ( k ) ) 4  1’2( 7 7 / 2 ~  ( f ) l k )  

x exp(-ikbsr)B(t+ ik/2a ( f ) ,  t -  ik/2a (f)) (3 .3 )  

where B ( a ,  p )  is the p-function and enters the calculation when one defines the Fourier 
transform of the one soliton solution 

+-cc 

U (k, r )  = (N’/’/L) I U (x, t )  exp(-ikx) dx 
-m 

= 4 1 / 2 / N ’ / 2 2 a (  f ) l  exp ( - ikbsr )B( t+ ik /2a ( f ) ,  ;-ik/2a(f)). ( 3 . 4 )  

The phonon number can now be calculated by taking 

one soliton state from the momentum equation. 

from equation (3 .3 ) .  
Following Ichikawa er a1 (1976) ,  we may also estimate the mass associated with the 

where 

Note that the frequency correction factor f enters the mass in (3 .5 )  through the 
constant a. Thus we have solved the KDV equation (in the long wavelength approxima- 
tion) for a lattice of anharmonicity four and have shown that the solution depends upon 
the correction of the oscillator frequency arising from quantum fluctuations. Now this 
frequency correction factor has been estimated for a periodic lattice in the low wave 
number limit. However, if periodicity of the lattice is not imposed, it can be seen that 
the summation 2,. w ( k ’ )  in equation (2.5‘) can diverge giving rise to a divergence which 
is analogous to the one present in q54 theory (Rajaraman 1975).  However, we have 
avoided this difficulty in our problem by invoking the discreteness and periodicity of our 
lattice system. It may be mentioned here that the factor f ( n ,  N )  has been estimated in 
the long wavelength limit in equation (2.7’),  taking only the leading power of ilk’ in the 
sine series occurring in w ( k ’ ) .  However, if there is any need higher powers of lk’/2 in 
the sine series may be retained and the correction factor (2.5’) may be re-estimated 
accordingly. 
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